CAR T cell therapy for children with rheumatic disease: the time is now

Deal Score0
Deal Score0


  • Pasquini, M. C. et al. Real-world evidence of tisagenlecleucel for pediatric acute lymphoblastic leukemia and non-Hodgkin lymphoma. Blood Adv. 4, 5414–5424 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boardman, A. P. & Salles, G. CAR T-cell therapy in large B cell lymphoma. Hematol. Oncol. 41, 112–118 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gardner, R. A. et al. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood 129, 3322–3331 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haghikia, A. et al. Anti-CD19 CAR T cells for refractory myasthenia gravis. Lancet Neurol. 22, 1104–1105 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Auth, J. et al. CD19-targeting CAR T-cell therapy in patients with diffuse systemic sclerosis: a case series. Lancet Rheumatol. 7, e83–e93 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Qin, C. et al. Single-cell analysis of refractory anti-SRP necrotizing myopathy treated with anti-BCMA CAR-T cell therapy. Proc. Natl Acad. Sci. USA 121, e2315990121 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lodka, D. et al. CD19-targeting CAR T cells protect from ANCA-induced acute kidney injury. Ann. Rheum. Dis. 83, 499–507 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J. et al. Antigen-specific B cell depletion for precision therapy of mucosal pemphigus vulgaris. J. Clin. Invest. 130, 6317–6324 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sadun, R. E. & Foster, M. H. Deja vu but new: using T cells to deplete B cells to treat lupus. Am. J. Kidney Dis. 74, 708–710 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Kansal, R. et al. Sustained B cell depletion by CD19-targeted CAR T cells is a highly effective treatment for murine lupus. Sci. Transl. Med. 11, eaav1648 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muller, F. et al. CD19 CAR T-cell therapy in autoimmune disease — a case series with follow-up. N. Engl. J. Med. 390, 687–700 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Wilkinson, M. G. L. & Rosser, E. C. B cells as a therapeutic target in paediatric rheumatic disease. Front. Immunol. 10, 214 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, T. et al. Spatial transcriptomics identifies cellular and molecular characteristics of scleroderma skin lesions: pilot study in juvenile scleroderma. Int. J. Mol. Sci. 25, 9182 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torok, K. S. Updates in systemic sclerosis treatment and applicability to pediatric scleroderma. Rheum. Dis. Clin. North. Am. 47, 757–780 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Bloom, J. L. & Wu, E. Y. Update on antineutrophil cytoplasmic autoantibody vasculitis in children. Curr. Opin. Rheumatol. 36, 336–343 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahmoud, I. et al. Efficacy and safety of rituximab in the management of pediatric systemic lupus erythematosus: a systematic review. J. Pediatr. 187, 213–219.e2 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Balevic, S. J. et al. Extrapolation of adult efficacy data to pediatric systemic lupus erythematosus: evaluating similarities in exposure-response. J. Clin. Pharmacol. 63, 105–118 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sherman, M. A. et al. Treatment escalation patterns to start biologics in refractory moderate juvenile dermatomyositis among members of the Childhood Arthritis and Rheumatology Research Alliance. Pediatr. Rheumatol. Online J. 21, 3 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oddis, C. V. et al. Rituximab in the treatment of refractory adult and juvenile dermatomyositis and adult polymyositis: a randomized, placebo-phase trial. Arthritis Rheum. 65, 314–324 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aggarwal, R. et al. Predictors of clinical improvement in rituximab-treated refractory adult and juvenile dermatomyositis and adult polymyositis. Arthritis Rheumatol. 66, 740–749 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gagne, S. J. et al. Comparing rituximab and cyclophosphamide in induction therapy for childhood-onset anti-neutrophil cytoplasmic antibody-associated vasculitis: an ARChiVe registry cohort study. Arthritis Care Res. 77, 504–512 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Jamois, C. et al. Rituximab pediatric drug development: pharmacokinetic and pharmacodynamic modeling to inform regulatory approval for rituximab treatment in patients with granulomatosis with polyangiitis or microscopic polyangiitis. Clin. Transl. Sci. 15, 2172–2183 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Md Yusof, M. Y. et al. Predicting and managing primary and secondary non-response to rituximab using B-cell biomarkers in systemic lupus erythematosus. Ann. Rheum. Dis. 76, 1829–1836 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Wobma, H., Chang, J. C. & Prockop, S. E. Releasing our model T — chimeric antigen receptor (CAR) T-cells for autoimmune indications. Curr. Opin. Rheumatol. 37, 128–135 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tur, C. et al. CD19-CAR T-cell therapy induces deep tissue depletion of B cells. Ann. Rheum. Dis. 84, 106–114 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krickau, T. et al. CAR T-cell therapy rescues adolescent with rapidly progressive lupus nephritis from haemodialysis. Lancet 403, 1627–1630 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, X. et al. Treatment of two pediatric patients with refractory systemic lupus erythematosus using CD19-targeted CAR T-cells. Autoimmun. Rev. 24, 103692 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nicolai, R. et al. Autologous CD19-targeting CAR T cells in a patient with refractory juvenile dermatomyositis. Arthritis Rheumatol. 76, 1560–1565 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Schett, G. et al. Advancements and challenges in CAR T cell therapy in autoimmune diseases. Nat. Rev. Rheumatol. 20, 531–544 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Chung, J. B., Brudno, J. N., Borie, D. & Kochenderfer, J. N. Chimeric antigen receptor T cell therapy for autoimmune disease. Nat. Rev. Immunol. 24, 830–845 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stojkic, I. et al. CAR T cell therapy for refractory pediatric systemic lupus erythematosus: a new era of hope? Pediatr. Rheumatol. Online J. 22, 72 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bernatsky, S. et al. Mortality in systemic lupus erythematosus. Arthritis Rheum. 54, 2550–2557 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ambrose, N. et al. Differences in disease phenotype and severity in SLE across age groups. Lupus 25, 1542–1550 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brunner, H. I., Gladman, D. D., Ibanez, D., Urowitz, M. D. & Silverman, E. D. Difference in disease features between childhood-onset and adult-onset systemic lupus erythematosus. Arthritis Rheum. 58, 556–562 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Hersh, A. O. et al. Differences in long-term disease activity and treatment of adult patients with childhood- and adult-onset systemic lupus erythematosus. Arthritis Rheum. 61, 13–20 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tucker, L. B. et al. Adolescent onset of lupus results in more aggressive disease and worse outcomes: results of a nested matched case-control study within LUMINA, a multiethnic US cohort (LUMINA LVII). Lupus 17, 314–322 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, A. B. & Reed, A. M. Clinical features, pathogenesis and treatment of juvenile and adult dermatomyositis. Nat. Rev. Rheumatol. 7, 664–675 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Papadopoulou, C. & McCann, L. J. The vasculopathy of juvenile dermatomyositis. Front. Pediatr. 6, 284 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boros, C. et al. Juvenile dermatomyositis: what comes next? Long-term outcomes in childhood myositis from a patient perspective. Pediatr. Rheumatol. Online J. 20, 102 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iudici, M. et al. Childhood- versus adult-onset ANCA-associated vasculitides: a nested, matched case-control study from the French vasculitis study group registry. Autoimmun. Rev. 17, 108–114 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Foeldvari, I. et al. Are diffuse and limited juvenile systemic sclerosis different in clinical presentation? Clinical characteristics of a juvenile systemic sclerosis cohort. J. Scleroderma Relat. Disord. 4, 49–61 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Foeldvari, I. et al. Differences sustained between diffuse and limited forms of juvenile systemic sclerosis in an expanded international cohort. Arthritis Care Res. 74, 1575–1584 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Stevens, B. E. et al. Clinical characteristics and factors associated with disability and impaired quality of life in children with juvenile systemic sclerosis: results from the Childhood Arthritis and Rheumatology Research Alliance legacy registry. Arthritis Care Res. 70, 1806–1813 (2018).

    Article 

    Google Scholar
     

  • Mirguet, A. et al. Long-term outcomes of childhood-onset systemic lupus erythematosus. Rheumatology 64, 2209–2213 (2024).

    Article 

    Google Scholar
     

  • Bitencourt, N. et al. “You just have to keep going, you can’t give up”: coping mechanisms among young adults with lupus transferring to adult care. Lupus 30, 2221–2229 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Tsaltskan, V. et al. Long-term outcomes in juvenile myositis patients. Semin. Arthritis Rheum. 50, 149–155 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Sanner, H. et al. Long-term muscular outcome and predisposing and prognostic factors in juvenile dermatomyositis: a case-control study. Arthritis Care Res. 62, 1103–1111 (2010).

    Article 

    Google Scholar
     

  • Foeldvari, I., Nihtyanova, S. I., Wierk, A. & Denton, C. P. Characteristics of patients with juvenile onset systemic sclerosis in an adult single-center cohort. J. Rheumatol. 37, 2422–2426 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Arulkumaran, N. et al. Long- term outcome of paediatric patients with ANCA vasculitis. Pediatr. Rheumatol. Online J. 9, 12 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hiraki, L. T. et al. End-stage renal disease due to lupus nephritis among children in the US, 1995–2006. Arthritis Rheum. 63, 1988–1997 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ward, L. M. et al. Osteoporotic fractures and vertebral body reshaping in children with glucocorticoid-treated rheumatic disorders. J. Clin. Endocrinol. Metab. 106, e5195–e5207 (2021).

    PubMed 

    Google Scholar
     

  • Silva, C. A. & Brunner, H. I. Gonadal functioning and preservation of reproductive fitness with juvenile systemic lupus erythematosus. Lupus 16, 593–599 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Silva, M. F. et al. A multicenter study of invasive fungal infections in patients with childhood-onset systemic lupus erythematosus. J. Rheumatol. 42, 2296–2303 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schanberg, L. E. et al. Premature atherosclerosis in pediatric systemic lupus erythematosus: risk factors for increased carotid intima-media thickness in the atherosclerosis prevention in pediatric lupus erythematosus cohort. Arthritis Rheum. 60, 1496–1507 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sabbagh, S. E. et al. Risk factors associated with Pneumocystis jirovecii pneumonia in juvenile myositis in North America. Rheumatology 60, 829–836 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fisler, R. E., Liang, M. G., Fuhlbrigge, R. C., Yalcindag, A. & Sundel, R. P. Aggressive management of juvenile dermatomyositis results in improved outcome and decreased incidence of calcinosis. J. Am. Acad. Dermatol. 47, 505–511 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, Y., Kumar, S., Lim, L. S., Silverman, E. D. & Levy, D. M. Risk factors for symptomatic avascular necrosis in childhood-onset systemic lupus erythematosus. J. Rheumatol. 42, 2304–2309 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren, Z., Laumann, A. E. & Silverberg, J. I. Association of dermatomyositis with systemic and opportunistic infections in the United States. Arch. Dermatol. Res. 311, 377–387 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Restrepo-Escobar, M., N, A. R., Hernandez-Zapata, L. J., Velasquez, M. & Eraso, R. Factors associated with infection amongst paediatric patients with systemic lupus erythematosus treated in the intensive care unit. Lupus 28, 1141–1147 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ardalan, K., Lloyd-Jones, D. M. & Schanberg, L. E. Cardiovascular health in pediatric rheumatologic diseases. Rheum. Dis. Clin. North. Am. 48, 157–181 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Nordal, E. et al. Growth and puberty in juvenile dermatomyositis: a longitudinal cohort study. Arthritis Care Res. 72, 265–273 (2020).

    Article 

    Google Scholar
     

  • Shiff, N. J. et al. Glucocorticoid-related changes in body mass index among children and adolescents with rheumatic diseases. Arthritis Care Res. 65, 113–121 (2013).

    Article 

    Google Scholar
     

  • Santiago, R. A., Silva, C. A., Caparbo, V. F., Sallum, A. M. & Pereira, R. M. Bone mineral apparent density in juvenile dermatomyositis: the role of lean body mass and glucocorticoid use. Scand. J. Rheumatol. 37, 40–47 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khojah, A., Liu, V., Morgan, G., Shore, R. M. & Pachman, L. M. Changes in total body fat and body mass index among children with juvenile dermatomyositis treated with high-dose glucocorticoids. Pediatr. Rheumatol. Online J. 19, 118 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knight, A. M., Trupin, L., Katz, P., Yelin, E. & Lawson, E. F. Depression risk in young adults with juvenile- and adult-onset lupus: twelve years of followup. Arthritis Care Res. 70, 475–480 (2018).

    Article 

    Google Scholar
     

  • Livermore, P. et al. Being on the juvenile dermatomyositis rollercoaster: a qualitative study. Pediatr. Rheumatol. Online J. 17, 30 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ardalan, K. et al. Parent perspectives on addressing emotional health for children and young adults with juvenile myositis. Arthritis Care Res. 73, 18–29 (2021).

    Article 

    Google Scholar
     

  • Fawole, O. A. et al. Engaging patients and parents to improve mental health intervention for youth with rheumatological disease. Pediatr. Rheumatol. Online J. 19, 19 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Treemarcki, E. B., Danguecan, A. N., Cunningham, N. R. & Knight, A. M. Mental health in pediatric rheumatology: an opportunity to improve outcomes. Rheum. Dis. Clin. North. Am. 48, 67–90 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Donnelly, C. et al. Fatigue and depression predict reduced health-related quality of life in childhood-onset lupus. Lupus 27, 124–133 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruperto, N. et al. Health-related quality of life in juvenile-onset systemic lupus erythematosus and its relationship to disease activity and damage. Arthritis Rheum. 51, 458–464 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Moorthy, L. N. et al. Relationship between health-related quality of life, disease activity and disease damage in a prospective international multicenter cohort of childhood onset systemic lupus erythematosus patients. Lupus 26, 255–265 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Apaz, M. T. et al. Health-related quality of life of patients with juvenile dermatomyositis: results from the Pediatric Rheumatology International Trials Organisation multinational quality of life cohort study. Arthritis Rheum. 61, 509–517 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Tollisen, A., Sanner, H., Flato, B. & Wahl, A. K. Quality of life in adults with juvenile-onset dermatomyositis: a case-control study. Arthritis Care Res. 64, 1020–1027 (2012).

    Article 

    Google Scholar
     

  • Neely, J. et al. Baseline characteristics of children with juvenile dermatomyositis enrolled in the first year of the new Childhood Arthritis and Rheumatology Research Alliance registry. Pediatr. Rheumatol. Online J. 20, 50 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Groot, N. et al. Effects of childhood-onset systemic lupus erythematosus on academic achievements and employment in adult life. J. Rheumatol. 48, 915–923 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Zelko, F. et al. Academic outcomes in childhood-onset systemic lupus erythematosus. Arthritis Care Res. 64, 1167–1174 (2012).

    Article 

    Google Scholar
     

  • Lim, L. S. H. et al. A population-based study of grade 12 academic performance in adolescents with childhood-onset chronic rheumatic diseases. J. Rheumatol. 49, 299–306 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Moorthy, L. N., Peterson, M. G., Hassett, A., Baratelli, M. & Lehman, T. J. Impact of lupus on school attendance and performance. Lupus 19, 620–627 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brunner, H. I., Sherrard, T. M. & Klein-Gitelman, M. S. Cost of treatment of childhood-onset systemic lupus erythematosus. Arthritis Rheum. 55, 184–188 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Kwa, M. C., Silverberg, J. I. & Ardalan, K. Inpatient burden of juvenile dermatomyositis among children in the United States. Pediatr. Rheumatol. Online J. 16, 70 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maus, M. V. & Nikiforow, S. The why, what, and how of the new FACT standards for immune effector cells. J. Immunother. Cancer 5, 36 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Food and Drug Administration. Long term follow-up after administration of human gene therapy products — guidance for industry (2020).

  • Fern, L. A. et al. Available, accessible, aware, appropriate, and acceptable: a strategy to improve participation of teenagers and young adults in cancer trials. Lancet Oncol. 15, e341–e350 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Correll, C. K. et al. 2015 American College of Rheumatology workforce study and demand projections of pediatric rheumatology workforce, 2015-2030. Arthritis Care Res. 74, 340–348 (2022).

    Article 

    Google Scholar
     

  • Orr, C. J. et al. Projecting the future pediatric subspecialty workforce: summary and recommendations. Pediatrics 153, e2023063678T (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Hall, A. G. et al. Access to chimeric antigen receptor T cell clinical trials in underrepresented populations: a multicenter cohort study of pediatric and young adult acute lymphoblastic leukemia patients. Transpl. Cell Ther. 29, 356.e1–356.e7 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Auletta, J. J. et al. Assessing Medicaid coverage for hematopoietic cell transplantation and chimeric antigen receptor T cell therapy: a project from the American Society for Transplantation and Cellular Therapy and the National Marrow Donor Program ACCESS initiative. Transpl. Cell Ther. 29, 713–720 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Steineck, A. et al. Access to CARe: a narrative of real-world medical decision-making to access chimeric antigen receptor (CAR) T-cell therapy in children, adolescents, and young adults. Pediatr. Blood Cancer 72, e31516 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Sainatham, C. et al. The current socioeconomic and regulatory landscape of immune effector cell therapies. Front. Med. 11, 1462307 (2024).

    Article 

    Google Scholar
     

  • Islam, N., Budvytyte, L., Khera, N. & Hilal, T. Disparities in clinical trial enrollment — focus on CAR-T and bispecific antibody therapies. Curr. Hematol. Malig. Rep. 20, 1 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Newman, H. et al. Impact of poverty and neighborhood opportunity on outcomes for children treated with CD19-directed CAR T-cell therapy. Blood 141, 609–619 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahmed, N. et al. Socioeconomic and racial disparity in chimeric antigen receptor T cell therapy access. Transpl. Cell Ther. 28, 358–364 (2022).

    Article 

    Google Scholar
     

  • Karmali, R. et al. Impact of race and social determinants of health on outcomes in patients with aggressive B-cell NHL treated with CAR-T therapy. Blood Adv. 8, 2592–2599 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sureda, A. et al. Logistical challenges of CAR T-cell therapy in non-Hodgkin lymphoma: a survey of healthcare professionals. Future Oncol. 20, 2855–2868 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vara, E., Gilbert, M. & Ruth, N. M. Health disparities in outcomes of pediatric systemic lupus erythematosus. Front. Pediatr. 10, 879208 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akinsete, A. M., Woo, J. M. P. & Rubinstein, T. B. Disparities in pediatric rheumatic diseases. Rheum. Dis. Clin. North. Am. 48, 183–198 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Rubinstein, T. B. & Knight, A. M. Disparities in childhood-onset lupus. Rheum. Dis. Clin. North Am. 46, 661–672 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Phillippi, K. et al. Race, income, and disease outcomes in juvenile dermatomyositis. J. Pediatr. 184, 38–44.e1 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng, Y. & Tsao, B. P. Updates in lupus genetics. Curr. Rheumatol. Rep. 19, 68 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Qin, Y., Ma, J. & Vinuesa, C. G. Monogenic lupus: insights into disease pathogenesis and therapeutic opportunities. Curr. Opin. Rheumatol. 36, 191–200 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Costa-Reis, P. & Sullivan, K. E. Monogenic lupus: it’s all new! Curr. Opin. Immunol. 49, 87–95 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Demirkaya, E., Sahin, S., Romano, M., Zhou, Q. & Aksentijevich, I. New horizons in the genetic etiology of systemic lupus erythematosus and lupus-like disease: monogenic lupus and beyond. J. Clin. Med. 9, 712 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Webb, R. et al. Early disease onset is predicted by a higher genetic risk for lupus and is associated with a more severe phenotype in lupus patients. Ann. Rheum. Dis. 70, 151–156 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Tirosh, I. et al. Whole exome sequencing in childhood-onset lupus frequently detects single gene etiologies. Pediatr. Rheumatol. Online J. 17, 52 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Misztal, M. C. et al. Genome-wide sequencing identified rare genetic variants for childhood-onset monogenic lupus. J. Rheumatol. 50, 671–675 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Belot, A. et al. Contribution of rare and predicted pathogenic gene variants to childhood-onset lupus: a large, genetic panel analysis of British and French cohorts. Lancet Rheumatol. 2, e99–e109 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Langefeld, C. D. et al. Transancestral mapping and genetic load in systemic lupus erythematosus. Nat. Commun. 8, 16021 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mougiakakos, D. et al. CD19-targeted CAR T cells in refractory systemic lupus erythematosus. N. Engl. J. Med. 385, 567–569 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Mackensen, A. et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat. Med. 28, 2124–2132 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chellapandian, D., Chitty-Lopez, M. & Leiding, J. W. Precision therapy for the treatment of primary immunodysregulatory diseases. Immunol. Allergy Clin. North. Am. 40, 511–526 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Leiding, J. W. et al. Monogenic early-onset lymphoproliferation and autoimmunity: natural history of STAT3 gain-of-function syndrome. J. Allergy Clin. Immunol. 151, 1081–1095 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chan, A. Y. et al. Hematopoietic cell transplantation in patients with primary immune regulatory disorders (PIRD): a primary immune deficiency treatment consortium (PIDTC) survey. Front. Immunol. 11, 239 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tao, Z. et al. Impact of T cell characteristics on CAR-T cell therapy in hematological malignancies. Blood Cancer J. 14, 213 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baguet, C., Larghero, J. & Mebarki, M. Early predictive factors of failure in autologous CAR T-cell manufacturing and/or efficacy in hematologic malignancies. Blood Adv. 8, 337–342 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arcangeli, S. et al. CAR T cell manufacturing from naive/stem memory T lymphocytes enhances antitumor responses while curtailing cytokine release syndrome. J. Clin. Invest. 132, e150807 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, G. A. et al. Disease-associated and patient-specific immune cell signatures in juvenile-onset systemic lupus erythematosus: patient stratification using a machine-learning approach. Lancet Rheumatol. 2, e485–e496 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wat, J. & Barmettler, S. Hypogammaglobulinemia after chimeric antigen receptor (CAR) T-cell therapy: characteristics, management, and future directions. J. Allergy Clin. Immunol. Pract. 10, 460–466 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Angelidakis, G. et al. Humoral immunity and antibody responses against diphtheria, tetanus, and pneumococcus after immune effector cell therapies: a prospective study. Vaccines 12, 1070 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdel Rahman, Z. et al. Impact of anti-CD19 CAR-T axicabtagene ciloleucel on vaccine titers of DTaP and MMR. Blood 134, 5610–5610 (2019).

    Article 

    Google Scholar
     

  • Bansal, R. et al. Vaccine titers in lymphoma patients receiving chimeric antigen receptor T cell therapy. Blood 138, 3857–3857 (2021).

    Article 

    Google Scholar
     

  • Reynolds, G., Hall, V. G. & Teh, B. W. Vaccine schedule recommendations and updates for patients with hematologic malignancy post-hematopoietic cell transplant or CAR T-cell therapy. Transpl. Infect. Dis. 25, e14109 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walti, C. S. et al. Antibodies against vaccine-preventable infections after CAR-T cell therapy for B cell malignancies. JCI Insight 6, e146743 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bass, A. R. et al. 2022 American College of Rheumatology guideline for vaccinations in patients with rheumatic and musculoskeletal diseases. Arthritis Care Res. 75, 449–464 (2023).

    Article 

    Google Scholar
     

  • Hill, J. A. & Seo, S. K. How I prevent infections in patients receiving CD19-targeted chimeric antigen receptor T cells for B-cell malignancies. Blood 136, 925–935 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Los-Arcos, I. et al. Recommendations for screening, monitoring, prevention, and prophylaxis of infections in adult and pediatric patients receiving CAR T-cell therapy: a position paper. Infection 49, 215–231 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hayden, P. J. et al. Management of adults and children receiving CAR T-cell therapy: 2021 best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the joint accreditation committee of ISCT and EBMT (JACIE) and the European Haematology Association (EHA). Ann. Oncol. 33, 259–275 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khawaja, F. et al. ASH-ASTCT COVID-19 vaccination for HCT and CAR T cell recipients: frequently asked questions. hematology.org (2022).

  • Hill, J. A. et al. SARS-CoV-2 vaccination in the first year after hematopoietic cell transplant or chimeric antigen receptor T-cell therapy: a prospective, multicenter, observational study. Clin. Infect. Dis. 79, 542–554 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kinoshita, H. et al. T cell immune response to influenza vaccination when administered prior to and following autologous chimeric antigen receptor-modified T cell therapy. Transpl. Cell Ther. 31, 327–338 (2025).

    Article 

    Google Scholar
     

  • Walti, C. S. et al. Humoral immunogenicity of the seasonal influenza vaccine before and after CAR-T-cell therapy: a prospective observational study. J. Immunother. Cancer 9, e003428 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Summary of risk-based pneumococcal vaccination recommendations. cdc.gov (2025).

  • Abid, M. A. & Abid, M. B. SARS-CoV-2 vaccine response in CAR T-cell therapy recipients: a systematic review and preliminary observations. Hematol. Oncol. 40, 287–291 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gossi, S. et al. Humoral responses to repetitive doses of COVID-19 mRNA vaccines in patients with CAR-T-cell therapy. Cancers 14, 3527 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meir, J., Abid, M. A. & Abid, M. B. State of the CAR-T: risk of infections with chimeric antigen receptor T-cell therapy and determinants of SARS-CoV-2 vaccine responses. Transpl. Cell Ther. 27, 973–987 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lee, D. et al. Pneumococcal conjugate vaccine does not induce humoral response when administrated within the six months after CD19 CAR T-cell therapy. Transpl. Cell Ther. 29, 277.e1–277.e9 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Baden, L. R. et al. Prevention and treatment of cancer-related infections, version 3.2024, NCCN clinical practice guidelines in oncology. J. Natl Compr. Canc. Netw. 22, 617–644 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Fajgenbaum, D. C. & June, C. H. Cytokine storm. N. Engl. J. Med. 383, 2255–2273 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonifant, C. L., Jackson, H. J., Brentjens, R. J. & Curran, K. J. Toxicity and management in CAR T-cell therapy. Mol. Ther. Oncolytics 3, 16011 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brudno, J. N. & Kochenderfer, J. N. Current understanding and management of CAR T cell-associated toxicities. Nat. Rev. Clin. Oncol. 21, 501–521 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morris, E. C., Neelapu, S. S., Giavridis, T. & Sadelain, M. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat. Rev. Immunol. 22, 85–96 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hines, M. R. et al. Immune effector cell-associated hemophagocytic lymphohistiocytosis-like syndrome. Transpl. Cell Ther. 29, 438.e1–438.e16 (2023).

    Article 

    Google Scholar
     

  • Teachey, D. T. et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov. 6, 664–679 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gardner, R. A. et al. Preemptive mitigation of CD19 CAR T-cell cytokine release syndrome without attenuation of antileukemic efficacy. Blood 134, 2149–2158 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kadauke, S. et al. Risk-adapted preemptive tocilizumab to prevent severe cytokine release syndrome after CTL019 for pediatric B-cell acute lymphoblastic leukemia: a prospective clinical trial. J. Clin. Oncol. 39, 920–930 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duncan, B. B., Dunbar, C. E. & Ishii, K. Applying a clinical lens to animal models of CAR-T cell therapies. Mol. Ther. Methods Clin. Dev. 27, 17–31 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hay, K. A. et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood 130, 2295–2306 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Velasco, R., Mussetti, A., Villagran-Garcia, M. & Sureda, A. CAR T-cell-associated neurotoxicity in central nervous system hematologic disease: is it still a concern? Front. Neurol. 14, 1144414 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bachy, E. et al. A real-world comparison of tisagenlecleucel and axicabtagene ciloleucel CAR T cells in relapsed or refractory diffuse large B cell lymphoma. Nat. Med. 28, 2145–2154 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Myers, R. M. et al. Blinatumomab nonresponse and high-disease burden are associated with inferior outcomes after CD19-CAR for B-ALL. J. Clin. Oncol. 40, 932–944 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ravich, J. W. et al. Impact of high disease burden on survival in pediatric patients with B-ALL treated with tisagenlecleucel. Transpl. Cell Ther. 28, 73.e1–73.e9 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Schwingen, N. R. et al. Distinct safety and toxicity profile of CD19-directed CAR T-cell therapy in systemic lupus erythematosus versus B-cell lymphoma — a single-center experience. Blood 144, 4835–4835 (2024).

    Article 

    Google Scholar
     

  • Vora, S. B. et al. Infectious complications following CD19 chimeric antigen receptor T-cell therapy for children, adolescents, and young adults. Open. Forum Infect. Dis. 7, ofaa121 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Livingston, B., Bonner, A. & Pope, J. Differences in clinical manifestations between childhood-onset lupus and adult-onset lupus: a meta-analysis. Lupus 20, 1345–1355 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perna, F. et al. CAR T-cell toxicities: from bedside to bench, how novel toxicities inform laboratory investigations. Blood Adv. 8, 4348–4358 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hagen, M. et al. Local immune effector cell-associated toxicity syndrome in CAR T-cell treated patients with autoimmune disease: an observational study. Lancet Rheumatol. 7, e424–e433 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murugesan, V. et al. Comparison of histomorphological indices between adult and pediatric patients in response to induction therapy. Cureus 16, e66673 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verdun, N. & Marks, P. Secondary cancers after chimeric antigen receptor T-cell therapy. N. Engl. J. Med. 390, 584–586 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elsallab, M. et al. Second primary malignancies after commercial CAR T-cell therapy: analysis of the FDA adverse events reporting system. Blood 143, 2099–2105 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lamble, A. J. et al. Risk of T-cell malignancy after CAR T-cell therapy in children, adolescents, and young adults. Blood Adv. 8, 3544–3548 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jadlowsky, J. K. et al. Long-term safety of lentiviral or gammaretroviral gene-modified T cell therapies. Nat. Med 31, 1134–1144 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Edens, C. The impact of pediatric rheumatic diseases on sexual health, family planning, and pregnancy. Rheum. Dis. Clin. North. Am. 48, 113–140 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Melenhorst, J. J. et al. Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature 602, 503–509 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderson, N. D. et al. Transcriptional signatures associated with persisting CD19 CAR-T cells in children with leukemia. Nat. Med. 29, 1700–1709 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ligon, J. A. et al. Fertility and CAR T-cells: current practice and future directions. Transpl. Cell Ther. 28, 605 e1–605 e8 (2022).

    Article 

    Google Scholar
     

  • Oktay, K. et al. Fertility preservation in patients with cancer: ASCO clinical practice guideline update. J. Clin. Oncol. 36, 1994–2001 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Nahata, L., Sivaraman, V. & Quinn, G. P. Fertility counseling and preservation practices in youth with lupus and vasculitis undergoing gonadotoxic therapy. Fertil. Steril. 106, 1470–1474 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Leavitt, M., Adeleye, A. & Edens, C. Preserving fertility in people with rheumatic diseases. J. Clin. Rheumatol. 30, S13–S24 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • O’Leary, M. C. et al. FDA approval summary: tisagenlecleucel for treatment of patients with relapsed or refractory B-cell precursor acute lymphoblastic leukemia. Clin. Cancer Res. 25, 1142–1146 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Ringold, S., Consolaro, A. & Ardoin, S. P. Outcome measures in pediatric rheumatic disease. Rheum. Dis. Clin. North Am. 47, 655–668 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, H. et al. Performance of the 2016 ACR-EULAR myositis response criteria in juvenile dermatomyositis therapeutic trials and consensus profiles. Rheumatology 62, 3680–3689 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foeldvari, I. et al. Proposed response parameters for twelve-month drug trial in juvenile systemic sclerosis: results of the Hamburg international consensus meetings.Arthritis Care Res. 75, 2453–2462 (2023).

    Article 

    Google Scholar
     

  • Brunner, H. I. et al. American College of Rheumatology provisional criteria for clinically relevant improvement in children and adolescents with childhood-onset systemic lupus erythematosus. Arthritis Care Res. 71, 579–590 (2019).

    Article 

    Google Scholar
     

  • Smith, E. M. D. et al. Defining remission in childhood-onset lupus: PReS-endorsed consensus definitions by an international task force. Clin. Immunol. 263, 110214 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lazarevic, D. et al. The PRINTO criteria for clinically inactive disease in juvenile dermatomyositis. Ann. Rheum. Dis. 72, 686–693 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Del Gaizo, V. & Kohlheim, M. Patient engagement in pediatric rheumatology research. Rheum. Dis. Clin. North Am. 48, 1–13 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Weitzman, E. R. et al. Adding patient-reported outcomes to a multisite registry to quantify quality of life and experiences of disease and treatment for youth with juvenile idiopathic arthritis. J. Patient Rep. Outcomes 2, 1 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gonzalez Sepulveda, J. M. et al. Preferences for potential benefits and risks for gene therapy in the treatment of sickle cell disease. Blood Adv. 7, 7371–7381 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Z. et al. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Cancer Cell 28, 415–428 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rotte, A. et al. Dose-response correlation for CAR-T cells: a systematic review of clinical studies. J. Immunother. Cancer 10, e005678 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stefanski, H. E. et al. Higher doses of tisagenlecleucel are associated with improved outcomes: a report from the pediatric real-world CAR consortium. Blood Adv. 7, 541–548 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gauthier, J. et al. Factors associated with outcomes after a second CD19-targeted CAR T-cell infusion for refractory B-cell malignancies. Blood 137, 323–335 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holland, E. M. et al. Efficacy of second CAR-T (CART2) infusion limited by poor CART expansion and antigen modulation. J. Immunother. Cancer 10, e004483 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turtle, C. J. et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Invest. 126, 2123–2138 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hill, J. A. et al. Durable preservation of antiviral antibodies after CD19-directed chimeric antigen receptor T-cell immunotherapy. Blood Adv. 3, 3590–3601 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bodansky, A. et al. Unveiling the proteome-wide autoreactome enables enhanced evaluation of emerging CAR T cell therapies in autoimmunity. J. Clin. Invest. 134, e180012 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hill, J. A. et al. Anti-HLA antibodies in recipients of CD19 versus BCMA-targeted CAR T-cell therapy. Am. J. Transpl. 23, 416–422 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lee, D. W. et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol. Blood Marrow Transpl. 25, 625–638 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Rejeski, K. et al. Immune effector cell-associated hematotoxicity: EHA/EBMT consensus grading and best practice recommendations. Blood 142, 865–877 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Costenbader, K. H. et al. Development and initial validation of a self-assessed lupus organ damage instrument. Arthritis Care Res. 62, 559–568 (2010).

    Article 

    Google Scholar
     

  • Rider, L. G. et al. Damage extent and predictors in adult and juvenile dermatomyositis and polymyositis as determined with the myositis damage index. Arthritis Rheum. 60, 3425–3435 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reeve, B. B. et al. Validity and reliability of the pediatric patient-reported outcomes version of the common terminology criteria for adverse events. J. Natl Cancer Inst. 112, 1143–1152 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McNerney, K. O. et al. INSPIRED symposium part 3: prevention and management of pediatric chimeric antigen receptor T cell-associated emergent toxicities. Transpl. Cell Ther. 30, 38–55 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Pennisi, M. et al. Modified EASIX predicts severe cytokine release syndrome and neurotoxicity after chimeric antigen receptor T cells. Blood Adv. 5, 3397–3406 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hashmi, H. et al. Venous thromboembolism associated with CD19-directed CAR T-cell therapy in large B-cell lymphoma. Blood Adv. 4, 4086–4090 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kammeyer, R. et al. Cognitive dysfunction in pediatric systemic lupus erythematosus: current knowledge and future directions. Child. Neuropsychol. 30, 818–846 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Samuels, S. et al. Pediatric efficacy extrapolation in drug development submitted to the US Food and Drug Administration 2015–2020. J. Clin. Pharmacol. 63, 307–313 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Food and Drug Administration. Pediatric extrapolation guidance for industry (2024).

  • Food and Drug Administration. Risk evaluation and mitigation strategies (REMS) for autologous chimeric antigen receptor (CAR) T cell immunotherapies modified to minimize burden on healthcare delivery system (2024).



  • Source link

    We will be happy to hear your thoughts

    Leave a reply

    Dupuytren Solutions
    Logo
    Shopping cart