Verteporfin ameliorates fibrotic aspects of Dupuytren’s disease nodular fibroblasts irrespective the activation state of the cells

Deal Score0
Deal Score0


  • Shih, B. & Bayat, A. Scientific understanding and clinical management of Dupuytren disease. Nat. Rev. Rheumatol. 6(12), 715–726 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karkampouna, S. et al. Novel ex vivo culture method for the study of Dupuytren’s disease: Effects of TGFβ type 1 receptor modulation by antisense oligonucleotides. Mol. Ther. Nucl. Acids. 3, e142 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Larsen, S. et al. Genetic and environmental influences in Dupuytren’s disease: A study of 30,330 Danish twin pairs. J. Hand. Surg. 40(2), 171–176 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Dolmans, G. H. et al. Wnt signaling and Dupuytren’s disease. N. Engl. J. Med. 365(4), 307–317 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Becker, K. et al. Meta-analysis of genome-wide association studies and network analysis-based integration with gene expression data identify new suggestive loci and unravel a Wnt-centric network associated with Dupuytren’s disease. PLoS ONE 11(7), e0158101 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ng, M. et al. A genome-wide association study of Dupuytren disease reveals 17 additional variants implicated in fibrosis. Am. J. Hum. Genet. 101(3), 417–427 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sayadi, L. R. et al. The molecular pathogenesis of Dupuytren disease: Review of the literature and suggested new approaches to treatment. Annals Plast. Surg. 83(5), 594–600 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Pratt A, Ball C. Dupuytren ’ s disease—The role of hand therapy. In: Living Textbook of Hand Surgery 2015:1–7.

  • Ball, C., Izadi, D., Verjee, L. S., Chan, J. & Nanchahal, J. Systematic review of non-surgical treatments for early Dupuytren’s disease. BMC Musculoskelet. Disord. 17(1), 345 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Badalamente, M. A., Hurst, L. C. & Hentz, V. R. Collagen as a clinical target: Nonoperative treatment of Dupuytren’s disease. J. Hand. Surg. Am. 27(5), 788–798 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Hurst, L. C. et al. Injectable collagenase Clostridium histolyticum for Dupuytren’s ontracture. N. Engl. J. Med. 361(10), 968–979 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scherman, P., Jenmalm, P. & Dahlin, L. B. Three-year recurrence of Dupuytren’s contracture after needle fasciotomy and collagenase injection: a two-centre randomized controlled trial. J. Hand. Surg. 43(8), 836–840 (2018).

    Article 

    Google Scholar
     

  • Black, E. M. & Blazar, P. E. Dupuytren disease: An evolving understanding of an age-old disease. Am. Acad. Orthop. Surg. 19(12), 746–757 (2011).

    Article 

    Google Scholar
     

  • Rodrigues, J. N. et al. Surgery for Dupuytren’s contracture of the fingers. Cochrane Database Syst. Rev. 12, CD010143 (2015).


    Google Scholar
     

  • Karkampouna, S. et al. Connective tissue degeneration: Mechanisms of palmar fascia degeneration (Dupuytren’s disease). Curr. Mol. Biol. Rep. 2(3), 133–140 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karakaplan, M. Percutaneous needle aponeurotomy for the treatment of Dupuytren’s contracture. Jt. Dis. Relat. Surg. 30(1), 53–60 (2019).


    Google Scholar
     

  • Alfonso-Rodríguez, C. A. et al. Identification of histological patterns in clinically affected and unaffected palm regions in Dupuytren’s disease. PLoS ONE 9(11), e112457 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Szeto, S. G. et al. YAP/TAZ are mechanoregulators of TGF-β-Smad signaling and renal fibrogenesis. J. Am. Soc. Nephrol. 27(10), 3117–3128 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carthy, J. M. TGFβ signaling and the control of myofibroblast differentiation: Implications for chronic inflammatory disorders. J. Cell. Physiol. 233(1), 98–106 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vallée, A. & Lecarpentier, Y. TGF-β in fibrosis by acting as a conductor for contractile properties of myofibroblasts. Cell Biosci. 9(1), 98 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Distler, J. H. W. et al. Shared and distinct mechanisms of fibrosis. Nat. Rev. Rheumatol. 15(12), 705–730 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krause, C., Kloen, P. & ten Dijke, P. Elevated transforming growth factor β and mitogen-activated protein kinase pathways mediate fibrotic traits of Dupuytren’s disease fibroblasts. Fibrogenesis Tissue Repair. 4(1), 14 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Badalamente, M. A., Sampson, S. P., Hurst, L. C., Dowd, A. & Miyasaka, K. The role of transforming growth factor beta in Dupuytren’s disease. J. Hand. Surg. Am. 21(2), 210–215 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Satish, L., Gallo, P. H., Baratz, M. E., Johnson, S. & Kathju, S. Reversal of TGF-β1 stimulation of α-smooth muscle actin and extracellular matrix components by cyclic AMP in Dupuytren’s – derived fibroblasts. BMC Musculoskelet. Disord. 12(1), 113 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piersma, B., Bank, R. A. & Boersema, M. Signaling in fibrosis: TGF-β, WNT, and YAP/TAZ converge. Front. Med. 2, 1–14 (2015).

    Article 

    Google Scholar
     

  • Piersma, B. et al. YAP1 is a driver of myofibroblast differentiation in normal and diseased fibroblasts. Am. J. Pathol. 185(12), 3326–3337 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qin, Z., Xia, W., Fisher, G. J., Voorhees, J. J. & Quan, T. YAP/TAZ regulates TGF-β/Smad3 signaling by induction of Smad7 via AP-1 in human skin dermal fibroblasts. Cell Commun. Signal. 16(1), 18 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lee, M. J., Byun, M. R., Furutani-Seiki, M., Hong, J. H. & Jung, H. S. YAP and TAZ regulate skin wound healing. J. Invest. Dermatol. 134(2), 518–525 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mannaerts, I. et al. The Hippo pathway effector YAP controls mouse hepatic stellate cell activation. J. Hepatol. 63(3), 679–688 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang, M. et al. Yap/Taz deletion in gli+ cell-derived myofibroblasts attenuates fibrosis. J. Am. Soc. Nephrol. 28(11), 3278–3290 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, W. & Kong, Y. YAP is essential for TGF-β-induced retinal fibrosis in diabetic rats via promoting the fibrogenic activity of Müller cells. J. Cell Mol. Med. 24(21), 12390–12400 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leung, J. Y. et al. Sav1 loss induces senescence and Stat3 activation coinciding with tubulointerstitial fibrosis. Mol. Cell. Biol. 37(12), 1–17 (2017).

    Article 

    Google Scholar
     

  • Du, K. et al. Hedgehog-YAP signaling pathway regulates glutaminolysis to control activation of hepatic stellate cells. Gastroenterology 154(5), 1465–1479 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, H. et al. Blockade of YAP alleviates hepatic fibrosis through accelerating apoptosis and reversion of activated hepatic stellate cells. Mol. Immunol. 107, 29–40 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin, J. et al. Inhibition of yes-associated protein by verteporfin ameliorates unilateral ureteral obstruction-induced renal tubulointerstitial inflammation and fibrosis. Int. J. Mol. Sci. 21(21), 8184 (2020).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Francisco, J. et al. Blockade of fibroblast YAP attenuates cardiac fibrosis and dysfunction through MRTF-A inhibition. JACC Basic Transl. Sci. 5(9), 931–945 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohede, D. C. J., de Jong, I. J., Bank, R. A. & van Driel, M. F. Verteporfin as a medical treatment in Peyronie’s disease. Sex Med. 6(4), 302–308 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Futakuchi, A. et al. YAP/TAZ are essential for TGF-β2–mediated conjunctival fibrosis. Investig. Opthalmol. Vis. Sci. 59(7), 3069 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Shi-wen, X. et al. Verteporfin inhibits the persistent fibrotic phenotype of lesional scleroderma dermal fibroblasts. J. Cell Commun. Signal 15(1), 71–80 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gui, Y. et al. Yap/Taz mediates mTORC2-stimulated fibroblast activation and kidney fibrosis. J. Biol. Chem. 293(42), 16364–16375 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, K. K., Sheppard, D. & Chapman, H. A. TGF-β1 signaling and tissue fibrosis. Cold Spring Harb. Perspect. Biol. 10(4), a022293 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ghosh, A. K. & Vaughan, D. E. PAI-1 in tissue fibrosis. J. Cell Physiol. 227(2), 493–507 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gjaltema, R. A. F. & Bank, R. A. Molecular insights into prolyl and lysyl hydroxylation of fibrillar collagens in health and disease. Crit. Rev. Biochem. Mol. Biol. 52(1), 74–95 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karsdal, M. A. et al. The good and the bad collagens of fibrosis—Their role in signaling and organ function. Adv. Drug Deliv. Rev. 121, 43–56 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fearing, B. V. et al. Verteporfin treatment controls morphology, phenotype, and global gene expression for cells of the human nucleus pulposus. JOR Spine. 3(4), 1–16 (2020).

    Article 

    Google Scholar
     

  • Kim, C.-L., Choi, S.-H. & Mo, J.-S. Role of the Hippo pathway in fibrosis and cancer. Cells 8(5), 468 (2019).

    Article 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Noguchi, S., Saito, A. & Nagase, T. YAP/TAZ signaling as a molecular link between fibrosis and cancer. Int. J. Mol. Sci. 19(11), 3674 (2018).

    Article 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hinz, B., McCulloch, C. A. & Coelho, N. M. Mechanical regulation of myofibroblast phenoconversion and collagen contraction. Exp. Cell Res. 379(1), 119–128 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • ten Dam, E.-J.P.M., van Beuge, M. M., Bank, R. A. & Werker, P. M. N. Further evidence of the involvement of the Wnt signaling pathway in Dupuytren’s disease. J. Cell Commun. Signal 10(1), 33–40 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Marcos Ribes, B. et al. Effectiveness and safety of pirfenidone for idiopathic pulmonary fibrosis. Eur. J. Hosp. Pharm. 27(6), 350–354 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Li, X., Zhu, L., Wang, B., Yuan, M. & Zhu, R. Drugs and targets in fibrosis. Front. Pharmacol. 8, 855 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Raghu, G. & Selman, M. Nintedanib and pirfenidone. New antifibrotic treatments indicated for idiopathic pulmonary fibrosis offer hopes and raises questions. Am. J. Respir. Crit. Care Med. 191(3), 252–4 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hughes, G., Toellner, H., Morris, H., Leonard, C. & Chaudhuri, N. Real world experiences: Pirfenidone and nintedanib are effective and well tolerated treatments for idiopathic pulmonary fibrosis. J. Clin. Med. 5(9), 78 (2016).

    Article 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bando, M. et al. Clinical experience of the long-term use of pirfenidone for idiopathic pulmonary fibrosis. Intern Med. 55(5), 443–448 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    We will be happy to hear your thoughts

    Leave a reply

    Dupuytren Solutions
    Logo
    Shopping cart