Insights into chondrocyte populations in cartilaginous tissues at the single-cell level

Deal Score0
Deal Score0


  • Liu, S. et al. Global burden of musculoskeletal disorders and attributable factors in 204 countries and territories: a secondary analysis of the global burden of disease 2019 study. BMJ Open 12, e062183 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, A. T. et al. Musculoskeletal health: an ecological study assessing disease burden and research funding. Lancet Reg. Health Am. 29, 100661 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. & Zhou, Y. Advances in targeted therapies for age-related osteoarthritis: a comprehensive review of current research. Biomed. Pharmacother. 179, 117314 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Archer, C. W. & Francis-West, P. The chondrocyte. Int. J. Biochem. Cell Biol. 35, 401–404 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Goldring, M. B. Update on the biology of the chondrocyte and new approaches to treating cartilage diseases. Best. Pract. Res. Clin. Rheumatol. 20, 1003–1025 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Muir, H. The chondrocyte, architect of cartilage. Biomechanics, structure, function and molecular biology of cartilage matrix macromolecules. Bioessays 17, 1039–1048 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • Pretemer, Y. et al. Differentiation of hypertrophic chondrocytes from human iPSCs for the in vitro modeling of chondrodysplasias. Stem Cell Rep. 16, 610–625 (2021).

    CAS 

    Google Scholar
     

  • Riegger, J. & Brenner, R. E. Pathomechanisms of posttraumatic osteoarthritis: chondrocyte behavior and fate in a precarious environment. Int. J. Mol. Sci. 21, 1560 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cancedda, R., Castagnola, P., Cancedda, F. D., Dozin, B. & Quarto, R. Developmental control of chondrogenesis and osteogenesis. Int. J. Dev. Biol. 44, 707–714 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Styczynska-Soczka, K., Amin, A. K. & Hall, A. C. Cell-associated type I collagen in nondegenerate and degenerate human articular cartilage. J. Cell Physiol. 236, 7672–7681 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Murray, D. H., Bush, P. G., Brenkel, I. J. & Hall, A. C. Abnormal human chondrocyte morphology is related to increased levels of cell-associated IL-1β and disruption to pericellular collagen type VI. J. Orthop. Res. 28, 1507–1514 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hall, A. C. The role of chondrocyte morphology and volume in controlling phenotype — implications for osteoarthritis, cartilage repair, and cartilage engineering. Curr. Rheumatol. Rep. 21, 38 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, T. et al. Single-cell RNA sequencing in orthopedic research. Bone Res. 11, 10 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, C. et al. Single-cell transcriptomic analysis of chondrocytes in cartilage and pathogenesis of osteoarthritis. Genes. Dis. 12, 101241 (2025).

    PubMed 

    Google Scholar
     

  • Pandey, A. & Bhutani, N. Profiling joint tissues at single-cell resolution: advances and insights. Nat. Rev. Rheumatol. 20, 7–20 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Z. et al. Single-cell profiling uncovers synovial fibroblast subpopulations associated with chondrocyte injury in osteoarthritis. Front. Endocrinol. 15, 1479909 (2024).


    Google Scholar
     

  • Danalache, M. et al. Exploration of changes in spatial chondrocyte organisation in human osteoarthritic cartilage by means of 3D imaging. Sci. Rep. 11, 9783 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315–317 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Campbell, D. D. & Pei, M. Surface markers for chondrogenic determination: a highlight of synovium-derived stem cells. Cells 1, 1107–1120 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Studle, C. et al. Challenges toward the identification of predictive markers for human mesenchymal stromal cells chondrogenic potential. Stem Cell Transl. Med. 8, 194–204 (2019).


    Google Scholar
     

  • Sober, S. A., Darmani, H., Alhattab, D. & Awidi, A. Flow cytometric characterization of cell surface markers to differentiate between fibroblasts and mesenchymal stem cells of different origin. Arch. Med. Sci. 19, 1487–1496 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Sandell, L. J. & Aigner, T. Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res. 3, 107–113 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, N., Wu, R. W. H., Lam, Y., Chan, W. C. W. & Chan, D. Hypertrophic chondrocytes at the junction of musculoskeletal structures. Bone Rep. 19, 101698 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schumacher, B. L., Hughes, C. E., Kuettner, K. E., Caterson, B. & Aydelotte, M. B. Immunodetection and partial cDNA sequence of the proteoglycan, superficial zone protein, synthesized by cells lining synovial joints. J. Orthop. Res. 17, 110–120 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Sun, Z. et al. Single-cell RNA sequencing reveals different chondrocyte states in femoral cartilage between osteoarthritis and healthy individuals. Front. Immunol. 15, 1407679 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fickert, S., Fiedler, J. & Brenner, R. E. Identification of subpopulations with characteristics of mesenchymal progenitor cells from human osteoarthritic cartilage using triple staining for cell surface markers. Arthritis Res. Ther. 6, R422–432 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tallheden, T. et al. Phenotypic plasticity of human articular chondrocytes. J. Bone Jt Surg. Am. 85, 93–100 (2003).


    Google Scholar
     

  • Jiang, Y. & Tuan, R. S. Origin and function of cartilage stem/progenitor cells in osteoarthritis. Nat. Rev. Rheumatol. 11, 206–212 (2015).

    PubMed 

    Google Scholar
     

  • Herren, A. O. F., Amin, A. K. & Hall, A. C. A disintegrin and metalloproteinase with thrombospondin motifs-4 levels in chondrocytes of different morphology within nondegenerate and early osteoarthritic human femoral head cartilage. Cartilage 15, 278–282 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Lauer, J. C., Selig, M., Hart, M. L., Kurz, B. & Rolauffs, B. Articular chondrocyte phenotype regulation through the cytoskeleton and the signaling processes that originate from or converge on the cytoskeleton: towards a novel understanding of the intersection between actin dynamics and chondrogenic function. Int. J. Mol. Sci. 22, 3279 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, H. et al. Identification of chondrocyte subpopulations in osteoarthritis using single-cell sequencing analysis. Gene 852, 147063 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Chou, C. H. et al. Synovial cell cross-talk with cartilage plays a major role in the pathogenesis of osteoarthritis. Sci. Rep. 10, 10868 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji, Q. et al. Single-cell RNA-seq analysis reveals the progression of human osteoarthritis. Ann. Rheum. Dis. 78, 100–110 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Di, J. et al. Cartilage tissue from sites of weight bearing in patients with osteoarthritis exhibits a differential phenotype with distinct chondrocytes subsets. RMD Open 9, e003255 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, M. et al. Single-cell RNA sequencing reveals distinct chondrocyte states in femoral cartilage under weight-bearing load in rheumatoid arthritis. Front. Immunol. 14, 1247355 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, X. et al. Comparison of the major cell populations among osteoarthritis, Kashin-Beck disease and healthy chondrocytes by single-cell RNA-seq analysis. Cell Death Dis. 12, 551 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan, Y. et al. Unveiling inflammatory and prehypertrophic cell populations as key contributors to knee cartilage degeneration in osteoarthritis using multi-omics data integration. Ann. Rheum. Dis. 83, 926–944 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. et al. Single-cell RNA sequencing reveals the impact of mechanical loading on knee tibial cartilage in osteoarthritis. Int. Immunopharmacol. 128, 111496 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Qu, Y. et al. A comprehensive analysis of single-cell RNA transcriptome reveals unique SPP1+ chondrocytes in human osteoarthritis. Comput. Biol. Med. 160, 106926 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Single-cell transcriptomics reveals novel chondrocyte and osteoblast subtypes and their role in knee osteoarthritis pathogenesis. Signal. Transduct. Target. Ther. 10, 40 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guang, Z., Min, Z., Jun-Tan, L., Tian-Xu, D. & Xiang, G. Single-cell protein activity analysis reveals a novel subpopulation of chondrocytes and the corresponding key master regulator proteins associated with anti-senescence and OA progression. Front. Immunol. 14, 1077003 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grandi, F. C. et al. Single-cell mass cytometry reveals cross-talk between inflammation-dampening and inflammation-amplifying cells in osteoarthritic cartilage. Sci. Adv. 6, eaay5352 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sahu, N., Grandi, F. C. & Bhutani, N. A single-cell mass cytometry platform to map the effects of preclinical drugs on cartilage homeostasis. JCI Insight 7, e160702 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Day, B., Mackenzie, W. G., Shim, S. S. & Leung, G. The vascular and nerve supply of the human meniscus. Arthroscopy 1, 58–62 (1985).

    CAS 
    PubMed 

    Google Scholar
     

  • Brophy, R. H. et al. Transcriptome comparison of meniscus from patients with and without osteoarthritis. Osteoarthritis Cartilage 26, 422–432 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, Z. et al. Whole-transcriptome sequence of degenerative meniscus cells unveiling diagnostic markers and therapeutic targets for osteoarthritis. Front. Genet. 12, 754421 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Englund, M., Guermazi, A. & Lohmander, S. L. The role of the meniscus in knee osteoarthritis: a cause or consequence? Radiol. Clin. North. Am. 47, 703–712 (2009).

    PubMed 

    Google Scholar
     

  • Fu, W. et al. Cellular features of localized microenvironments in human meniscal degeneration: a single-cell transcriptomic study. eLife 11, e79585 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, H. et al. Single-cell RNA-seq analysis identifies meniscus progenitors and reveals the progression of meniscus degeneration. Ann. Rheum. Dis. 79, 408–417 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Korpershoek, J. V. et al. Selection of highly proliferative and multipotent meniscus progenitors through differential adhesion to fibronectin: a novel approach in meniscus tissue engineering. Int. J. Mol. Sci. 22, 8614 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pattappa, G. et al. Fibronectin adherent cell populations derived from avascular and vascular regions of the meniscus have enhanced clonogenicity and differentiation potential under physioxia. Front. Bioeng. Biotechnol. 9, 789621 (2021).

    PubMed 

    Google Scholar
     

  • Muhammad, H. et al. Human migratory meniscus progenitor cells are controlled via the TGF-β pathway. Stem Cell Rep. 3, 789–803 (2014).

    CAS 

    Google Scholar
     

  • Mauck, R. L., Martinez-Diaz, G. J., Yuan, X. & Tuan, R. S. Regional multilineage differentiation potential of meniscal fibrochondrocytes: implications for meniscus repair. Anat. Rec. 290, 48–58 (2007).

    CAS 

    Google Scholar
     

  • Elayyan, J. et al. Lef1 ablation alleviates cartilage mineralization following posttraumatic osteoarthritis induction. Proc. Natl Acad. Sci. USA 119, e2116855119 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajasekaran, S. et al. Profiling extra cellular matrix associated proteome of human fetal nucleus pulposus in search for regenerative targets. Sci. Rep. 11, 19013 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajasekaran, S. et al. Proteomic signature of nucleus pulposus in fetal intervertebral disc. Asian Spine J. 14, 409–420 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diaz-Hernandez, M. E. et al. Derivation of notochordal cells from human embryonic stem cells reveals unique regulatory networks by single cell-transcriptomics. J. Cell Physiol. 235, 5241–5255 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Rodrigues-Pinto, R. et al. Human notochordal cell transcriptome unveils potential regulators of cell function in the developing intervertebral disc. Sci. Rep. 8, 12866 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tam, V. et al. DIPPER, a spatiotemporal proteomics atlas of human intervertebral discs for exploring ageing and degeneration dynamics. eLife 9, e64940 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minogue, B. M., Richardson, S. M., Zeef, L. A., Freemont, A. J. & Hoyland, J. A. Characterization of the human nucleus pulposus cell phenotype and evaluation of novel marker gene expression to define adult stem cell differentiation. Arthritis Rheum. 62, 3695–3705 (2010).

    PubMed 

    Google Scholar
     

  • Yee, A. et al. Fibrotic-like changes in degenerate human intervertebral discs revealed by quantitative proteomic analysis. Osteoarthritis Cartilage 24, 503–513 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Ye, D. et al. Comparative and quantitative proteomic analysis of normal and degenerated human annulus fibrosus cells. Clin. Exp. Pharmacol. Physiol. 42, 530–536 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Qiu, C. et al. Differential proteomic analysis of fetal and geriatric lumbar nucleus pulposus: immunoinflammation and age-related intervertebral disc degeneration. BMC Musculoskelet. Disord. 21, 339 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riester, S. M. et al. RNA sequencing identifies gene regulatory networks controlling extracellular matrix synthesis in intervertebral disk tissues. J. Orthop. Res. 36, 1356–1369 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Risbud, M. V. et al. Defining the phenotype of young healthy nucleus pulposus cells: recommendations of the spine research interest group at the 2014 annual ORS meeting. J. Orthop. Res. 33, 283–293 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richardson, S. M. et al. Notochordal and nucleus pulposus marker expression is maintained by sub-populations of adult human nucleus pulposus cells through aging and degeneration. Sci. Rep. 7, 1501 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minogue, B. M., Richardson, S. M., Zeef, L. A., Freemont, A. J. & Hoyland, J. A. Transcriptional profiling of bovine intervertebral disc cells: implications for identification of normal and degenerate human intervertebral disc cell phenotypes. Arthritis Res. Ther. 12, R22 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sakai, D. et al. Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc. Nat. Commun. 3, 1264 (2012).

    PubMed 

    Google Scholar
     

  • Lyu, F. J. et al. IVD progenitor cells: a new horizon for understanding disc homeostasis and repair. Nat. Rev. Rheumatol. 15, 102–112 (2019).

    PubMed 

    Google Scholar
     

  • Fernandes, L. M. et al. Single-cell RNA-seq identifies unique transcriptional landscapes of human nucleus pulposus and annulus fibrosus cells. Sci. Rep. 10, 15263 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cherif, H. et al. Single-Cell RNA-seq analysis of cells from degenerating and non-degenerating intervertebral discs from the same individual reveals new biomarkers for intervertebral disc degeneration. Int. J. Mol. Sci. 23, 3993 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, D. et al. Single-cell transcriptomics reveals heterogeneity and intercellular crosstalk in human intervertebral disc degeneration. iScience 26, 106692 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, S. et al. Single-cell RNA-seq analysis reveals that immune cells induce human nucleus pulposus ossification and degeneration. Front. Immunol. 14, 1224627 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Z. et al. Single-Cell RNA sequencing reveals the difference in human normal and degenerative nucleus pulposus tissue profiles and cellular interactions. Front. Cell Dev. Biol. 10, 910626 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, H. et al. Decoding the annulus fibrosus cell atlas by scRNA-seq to develop an inducible composite hydrogel: a novel strategy for disc reconstruction. Bioact. Mater. 14, 350–363 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ling, Z. et al. Single-cell RNA-seq analysis reveals macrophage involved in the progression of human intervertebral disc degeneration. Front. Cell Dev. Biol. 9, 833420 (2021).

    PubMed 

    Google Scholar
     

  • Han, S. et al. Single-cell RNA sequencing of the nucleus pulposus reveals chondrocyte differentiation and regulation in intervertebral disc degeneration. Front. Cell Dev. Biol. 10, 824771 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gan, Y. et al. Spatially defined single-cell transcriptional profiling characterizes diverse chondrocyte subtypes and nucleus pulposus progenitors in human intervertebral discs. Bone Res. 9, 37 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, T. et al. Spatiotemporal characterization of human early intervertebral disc formation at single-cell resolution. Adv. Sci. 10, e2206296 (2023).


    Google Scholar
     

  • Yang, X., Lu, Y., Zhou, H., Jiang, H. T. & Chu, L. Integrated proteome sequencing, bulk RNA sequencing and single-cell RNA sequencing to identify potential biomarkers in different grades of intervertebral disc degeneration. Front. Cell Dev. Biol. 11, 1136777 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Glyn-Jones, S. et al. Osteoarthritis. Lancet 386, 376–387 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Aigner, T. et al. Apoptotic cell death is not a widespread phenomenon in normal aging and osteoarthritis human articular knee cartilage: a study of proliferation, programmed cell death (apoptosis), and viability of chondrocytes in normal and osteoarthritic human knee cartilage. Arthritis Rheum. 44, 1304–1312 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Coryell, P. R., Diekman, B. O. & Loeser, R. F. Mechanisms and therapeutic implications of cellular senescence in osteoarthritis. Nat. Rev. Rheumatol. 17, 47–57 (2021).

    PubMed 

    Google Scholar
     

  • Mobasheri, A., Matta, C., Zakany, R. & Musumeci, G. Chondrosenescence: definition, hallmarks and potential role in the pathogenesis of osteoarthritis. Maturitas 80, 237–244 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Campisi, J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 75, 685–705 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Gruber, H. E., Ingram, J. A., Norton, H. J. & Hanley, E. N. Jr. Senescence in cells of the aging and degenerating intervertebral disc: immunolocalization of senescence-associated beta-galactosidase in human and sand rat discs. Spine 32, 321–327 (2007).

    PubMed 

    Google Scholar
     

  • Le Maitre, C. L., Freemont, A. J. & Hoyland, J. A. Accelerated cellular senescence in degenerate intervertebral discs: a possible role in the pathogenesis of intervertebral disc degeneration. Arthritis Res. Ther. 9, R45 (2007).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tchkonia, T., Zhu, Y., van Deursen, J., Campisi, J. & Kirkland, J. L. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J. Clin. Invest. 123, 966–972 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Childs, B. G., Durik, M., Baker, D. J. & van Deursen, J. M. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat. Med. 21, 1424–1435 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silwal, P. et al. Cellular senescence in intervertebral disc aging and degeneration: molecular mechanisms and potential therapeutic opportunities. Biomolecules 13, 686 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vamvakas, S. S., Mavrogonatou, E. & Kletsas, D. Human nucleus pulposus intervertebral disc cells becoming senescent using different treatments exhibit a similar transcriptional profile of catabolic and inflammatory genes. Eur. Spine J. 26, 2063–2071 (2017).

    PubMed 

    Google Scholar
     

  • Nelson, G. et al. A senescent cell bystander effect: senescence-induced senescence. Aging Cell 11, 345–349 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Aigner, T., Soder, S., Gebhard, P. M., McAlinden, A. & Haag, J. Mechanisms of disease: role of chondrocytes in the pathogenesis of osteoarthritis — structure, chaos and senescence. Nat. Clin. Pract. Rheumatol. 3, 391–399 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Franceschi, C. & Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Biol. Sci. Med. Sci. 69, S4–S9 (2014).

    PubMed 

    Google Scholar
     

  • Martin, J. A., Brown, T., Heiner, A. & Buckwalter, J. A. Post-traumatic osteoarthritis: the role of accelerated chondrocyte senescence. Biorheology 41, 479–491 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Jeon, O. H. et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat. Med. 23, 775–781 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dowthwaite, G. P. et al. The surface of articular cartilage contains a progenitor cell population. J. Cell Sci. 117, 889–897 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Diekman, B. O. et al. Expression of p16INK4a is a biomarker of chondrocyte aging but does not cause osteoarthritis. Aging Cell 17, e12771 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rim, Y. A., Nam, Y. & Ju, J. H. The role of chondrocyte hypertrophy and senescence in osteoarthritis initiation and progression. Int. J. Mol. Sci. 21, 2358 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langley, E. et al. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J. 21, 2383–2396 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Batshon, G. et al. Serum NT/CT SIRT1 ratio reflects early osteoarthritis and chondrosenescence. Ann. Rheum. Dis. 79, 1370–1380 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Makarczyk, M. J. et al. Aging-associated increase of GATA4 levels in articular cartilage is linked to impaired regenerative capacity of chondrocytes and osteoarthritis. Osteoarthritis Cartilage (2025).

  • Ma, H. L. et al. Osteoarthritis severity is sex dependent in a surgical mouse model. Osteoarthritis Cartilage 15, 695–700 (2007).

    PubMed 

    Google Scholar
     

  • Zhra, M. et al. The expression of a subset of aging and antiaging markers following the chondrogenic and osteogenic differentiation of mesenchymal stem cells of placental origin. Cells 13, 1022 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maatuf, Y. H. et al. Diverse response to local pharmacological blockade of Sirt1 cleavage in age-induced versus trauma-induced osteoarthritis female mice. Biomolecules 14, 81 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsujii, A., Nakamura, N. & Horibe, S. Age-related changes in the knee meniscus. Knee 24, 1262–1270 (2017).

    PubMed 

    Google Scholar
     

  • Chen, M. et al. Identification and validation of pivotal genes related to age-related meniscus degeneration based on gene expression profiling analysis and in vivo and in vitro models detection. BMC Med. Genomics 14, 237 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, K. I. et al. FOXO1 and FOXO3 transcription factors have unique functions in meniscus development and homeostasis during aging and osteoarthritis. Proc. Natl Acad. Sci. USA 117, 3135–3143 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swahn, H. et al. Senescent cell population with ZEB1 transcription factor as its main regulator promotes osteoarthritis in cartilage and meniscus. Ann. Rheum. Dis. 82, 403–415 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Novais, E. J. et al. Long-term treatment with senolytic drugs dasatinib and quercetin ameliorates age-dependent intervertebral disc degeneration in mice. Nat. Commun. 12, 5213 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Novais, E. J., Diekman, B. O., Shapiro, I. M. & Risbud, M. V. p16Ink4a deletion in cells of the intervertebral disc affects their matrix homeostasis and senescence associated secretory phenotype without altering onset of senescence. Matrix Biol. 82, 54–70 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Che, H. et al. p16 deficiency attenuates intervertebral disc degeneration by adjusting oxidative stress and nucleus pulposus cell cycle. eLife 9, e52570 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patil, P. et al. Systemic clearance of p16INK4a-positive senescent cells mitigates age-associated intervertebral disc degeneration. Aging Cell 18, e12927 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cherif, H. et al. Senotherapeutic drugs for human intervertebral disc degeneration and low back pain. eLife 9, e54693 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cherif, H. et al. Curcumin and o-vanillin exhibit evidence of senolytic activity in human IVD cells in vitro. J. Clin. Med. 8, 433 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swahn, H. et al. Shared and compartment-specific processes in nucleus pulposus and annulus fibrosus during intervertebral disc degeneration. Adv. Sci. 11, e2309032 (2024).


    Google Scholar
     

  • Zhang, Y. et al. Single-cell RNA-seq analysis identifies unique chondrocyte subsets and reveals involvement of ferroptosis in human intervertebral disc degeneration. Osteoarthritis Cartilage 29, 1324–1334 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Tang, X. et al. ATG9A as a potential diagnostic marker of intervertebral disc degeneration: Inferences from experiments and bioinformatics analysis incorporating sc-RNA-seq data. Gene 897, 148084 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Madhu, V. et al. The mitophagy receptor BNIP3 is critical for the regulation of metabolic homeostasis and mitochondrial function in the nucleus pulposus cells of the intervertebral disc. Autophagy 19, 1821–1843 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Madhu, V., Guntur, A. R. & Risbud, M. V. Role of autophagy in intervertebral disc and cartilage function: implications in health and disease. Matrix Biol. 100–101, 207–220 (2021).

    PubMed 

    Google Scholar
     

  • Lee, Y. et al. Coordinate regulation of the senescent state by selective autophagy. Dev. Cell 56, 1512–1525.e7 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Ottone, O. K., Kim, C. J., Collins, J. A. & Risbud, M. V. The cGAS-STING pathway affects vertebral bone but does not promote intervertebral disc cell senescence or degeneration. Front. Immunol. 13, 882407 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hatami-Marbini, H. On the mechanical roles of glycosaminoglycans in the tensile properties of porcine corneal stroma. Invest. Ophthalmol. Vis. Sci. 64, 3 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarrigiannidis, S. O. et al. A tough act to follow: collagen hydrogel modifications to improve mechanical and growth factor loading capabilities. Mater. Today Bio 10, 100098 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gama, C. I. et al. Sulfation patterns of glycosaminoglycans encode molecular recognition and activity. Nat. Chem. Biol. 2, 467–473 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Vogel, C. & Marcotte, E. M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 13, 227–232 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao, Q. et al. Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal. Transduct. Target. Ther. 8, 56 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferguson, G. B. et al. Mapping molecular landmarks of human skeletal ontogeny and pluripotent stem cell-derived articular chondrocytes. Nat. Commun. 9, 3634 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sulaiman, S. Z. S. et al. Comparison of bone and articular cartilage changes in osteoarthritis: a micro-computed tomography and histological study of surgically and chemically induced osteoarthritic rabbit models. J. Orthop. Surg. Res. 16, 663 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vincent, T. L. Mechanoflammation in osteoarthritis pathogenesis. Semin. Arthritis Rheum. 49, S36–S38 (2019).

    PubMed 

    Google Scholar
     

  • Weber, P. et al. The collagenase-induced osteoarthritis (CIOA) model: where mechanical damage meets inflammation. Osteoarthritis Cartilage Open 6, 100539 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colbath, A. & Haubruck, P. Closing the gap: sex-related differences in osteoarthritis and the ongoing need for translational studies. Ann. Transl. Med. 11, 339 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sebastian, A. et al. Single-cell RNA-seq reveals transcriptomic heterogeneity and post-traumatic osteoarthritis-associated early molecular changes in mouse articular chondrocytes. Cells 10, 1462 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dvir-Ginzberg, M., Maatuf, Y. H. & Mobasheri, A. Do we understand sex-related differences governing dimorphic disease mechanisms in preclinical animal models of osteoarthritis? Osteoarthritis Cartilage 32, 1054–1057 (2024).

    PubMed 

    Google Scholar
     

  • Pan, B. et al. Identification of key biomarkers related to fibrocartilage chondrocytes for osteoarthritis based on bulk, single-cell transcriptomic data. Front. Immunol. 15, 1482361 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chapman, J. H., Ghosh, D., Attari, S., Ude, C. C. & Laurencin, C. T. Animal models of osteoarthritis: updated models and outcome measures 2016-2023. Regen. Eng. Transl. Med. 10, 127–146 (2024).

    PubMed 

    Google Scholar
     

  • Dou, H. et al. Osteoarthritis models: from animals to tissue engineering. J. Tissue Eng. 14, 20417314231172584 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sengprasert, P., Kamenkit, O., Tanavalee, A. & Reantragoon, R. The immunological facets of chondrocytes in osteoarthritis: a narrative review. J. Rheumatol. (2023).

    PubMed 

    Google Scholar
     

  • Aguiar, D. J., Johnson, S. L. & Oegema, T. R. Notochordal cells interact with nucleus pulposus cells: regulation of proteoglycan synthesis. Exp. Cell Res. 246, 129–137 (1999).

    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    We will be happy to hear your thoughts

    Leave a reply

    Dupuytren Solutions
    Logo
    Shopping cart