C-X-C domain ligand 14-mediated stromal cell–macrophage interaction as a therapeutic target for hand dermal fibrosis

Deal Score0
Deal Score0


  • Shih, B. & Bayat, A. Scientific understanding and clinical management of Dupuytren disease. Nat. Rev. Rheumatol. 6, 715–726 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lanting, R., Broekstra, D. C., Werker, P. M. N. & van den Heuvel, E. R. A systematic review and meta-analysis on the prevalence of Dupuytren disease in the general population of Western countries. Plast. Reconstr. Surg. 133, 593–603 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carr, L., Michelotti, B., Brgoch, M., Hauck, R. & Ingraham, J. Dupuytren disease management trends: A survey of hand surgeons. Hand. (N. Y). 15, 97–102 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Bainbridge, C. et al. Current trends in the surgical management of Dupuytren’s disease in Europe: an analysis of patient charts. Eur. Orthop. Traumatol. 3, 31–41 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Musumeci, M. et al. Dupuytren’s disease therapy: targeting the vicious cycle of myofibroblasts? Expert Opin. Ther. Targets. 19, 1677–1687 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dolmans, G. H. et al. Wnt signaling and Dupuytren’s disease. N. Engl. J. Med. 365, 307–317 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ng, M. et al. A genome-wide association study of Dupuytren disease reveals 17 additional variants implicated in fibrosis. Am. J. Hum. Genet. 101, 417–427 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Varallo, V. M. et al. Beta-catenin expression in Dupuytren’s disease: potential role for cell-matrix interactions in modulating beta-catenin levels in vivo and in vitro. Oncogene. 22, 3680–3684 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ten Dam, E. J., van Beuge, M. M., Bank, R. A. & Werker, P. M. Further evidence of the involvement of the Wnt signaling pathway in Dupuytren’s disease. J. Cell Commun. Signal. 10, 33–40 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • van Beuge, M. M., Ten Dam, E. J., Werker, P. M. & Bank, R. A. Wnt pathway in Dupuytren disease: connecting profibrotic signals. Transl. Res. 166, 762–771.e3 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Samulėnas, G. et al. Evaluation of WNT signaling pathway gene variants. Genes (Basel). 12, 1293 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Izadi, D. et al. Identification of TNFR2 and IL-33 as therapeutic targets in localized fibrosis. Sci. Adv. 5, eaay0370 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verjee, L. S. et al. Unraveling the signaling pathways promoting fibrosis in Dupuytren’s disease reveals TNF as a therapeutic target. Proc. Natl. Acad. Sci. USA. 110, E928–E937 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akbar, M. et al. Attenuation of Dupuytren’s fibrosis via targeting of the STAT1 modulated IL-13Rα1 response. Sci. Adv. 6, eaaz8272 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Layton, T. B. et al. A vasculature niche orchestrates stromal cell phenotype through PDGF signaling: Importance in human fibrotic disease. Proc. Natl. Acad. Sci. USA. 119, e2120336119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Staverosky, J. A., Pryce, B. A., Watson, S. S. & Schweitzer, R. Tubulin polymerization-promoting protein family member 3, Tppp3, is a specific marker of the differentiating tendon sheath and synovial joints. Dev. Dyn. 238, 685–692 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harvey, T., Flamenco, S. & Fan, C. M. A Tppp3+Pdgfra+ tendon stem cell population contributes to regeneration and reveals a shared role for PDGF signalling in regeneration and fibrosis. Nat. Cell. Biol. 21, 1490–1503 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, T. et al. Single-cell deconvolution of fibroblast heterogeneity in mouse pulmonary fibrosis. Cell Rep. 22, 3625–3640 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, J. et al. Wnt/β-catenin signaling is hyperactivated in systemic sclerosis and induces Smad-dependent fibrotic responses in mesenchymal cells. Arthritis Rheum. 64, 2734–2745 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hwang, S. Y. et al. Direct targeting of β-catenin by a small molecule stimulates proteasomal degradation and suppresses oncogenic Wnt/β-catenin signaling. Cell Rep. 16, 28–36 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meyer, M., Müller, A. K., Yang, J., Ŝulcová, J. & Werner, S. The role of chronic inflammation in cutaneous fibrosis: fibroblast growth factor receptor deficiency in keratinocytes as an example. J. Investig. Dermatol. Symp. Proc. 15, 48–52 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ueha, S., Shand, F. H. & Matsushima, K. Cellular and molecular mechanisms of chronic inflammation-associated organ fibrosis. Front. Immunol. 3, 71 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wick, G. et al. The immunology of fibrosis: innate and adaptive responses. Trends Immunol. 31, 110–119 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • MacDonald, B. T., Tamai, K. & He, X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev. Cell. 17, 9–26 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piersma, B., Bank, R. A. & Boersema, M. Signaling in Fibrosis: TGF-β, WNT, and YAP/TAZ Converge. Front. Med. (Lausanne). 2, 59 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burgy, O. & Königshoff, M. The WNT signaling pathways in wound healing and fibrosis. Matrix Biol. 68–69, 67–80 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Hamburg-Shields, E., DiNuoscio, G. J., Mullin, N. K., Lafyatis, R. & Atit, R. P. Sustained β-catenin activity in dermal fibroblasts promotes fibrosis by up-regulating expression of extracellular matrix protein-coding genes. J. Pathol. 235, 686–697 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lam, A. P. et al. Nuclear β-catenin is increased in systemic sclerosis pulmonary fibrosis and promotes lung fibroblast migration and proliferation. Am. J. Respir. Cell Mol. Biol. 45, 915–922 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henderson, W. R. et al. Inhibition of Wnt/beta-catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis. Proc. Natl. Acad. Sci. USA. 107, 14309–14314 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, H. et al. Inhibition of Wnt/β-catenin signaling suppresses myofibroblast differentiation of lung resident mesenchymal stem cells and pulmonary fibrosis. Sci. Rep. 8, 13644 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beyer, C. et al. β-catenin is a central mediator of pro-fibrotic Wnt signaling in systemic sclerosis. Ann. Rheum. Dis. 71, 761–767 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tokunaga, Y. et al. Selective inhibitor of Wnt/β-catenin/CBP signaling ameliorates hepatitis C virus-induced liver fibrosis in mouse model. Sci. Rep. 7, 325 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, S., McLean, S., Carter, D. E. & Leask, A. The gene expression profile induced by Wnt 3a in NIH 3T3 fibroblasts. J. Cell Commun. Signal. 1, 175–183 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Działo, E. et al. WNT3a and WNT5a transported by exosomes activate WNT signaling pathways in human cardiac fibroblasts. Int. J. Mol. Sci. 20, 1436 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frangogiannis, N. Transforming growth factor-β in tissue fibrosis. J. Exp. Med. 217, e20190103 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Serini, G. & Gabbiana, G. Modulation of alpha-smooth muscle actin expression in fibroblasts by transforming growth factor-beta isoforms: an in vivo and in vitro study. Wound Repair Regen. 4, 278–287 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akhmetshina, A. et al. Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis. Nat. Commun. 3, 735 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Zhou, B. et al. Interactions between β-catenin and transforming growth factor-β signaling pathways mediate epithelial-mesenchymal transition and are dependent on the transcriptional co-activator cAMP-response element-binding protein (CREB)-binding protein (CBP). J. Biol. Chem. 287, 7026–7038 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou, J. et al. M2 macrophages promote myofibroblast differentiation of LR-MSCs and are associated with pulmonary fibrogenesis. Cell Commun. Signal. 16, 89 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wynn, T. A. & Vannella, K. M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 44, 450–462 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wynn, T. A. & Ramalingam, T. R. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat. Med. 18, 1028–1040 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lodyga, M. et al. Cadherin-11-mediated adhesion of macrophages to myofibroblasts establishes a profibrotic niche of active TGF-β. Sci. Signal. 12, eaao3469 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cereijo, R. et al. CXCL14, a brown adipokine that mediates brown-fat-to-macrophage communication in thermogenic adaptation. Cell Metab. 28, 750–763.e6 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tomita, K. et al. CXCL10-mediates macrophage, but not other innate immune cells-associated inflammation in murine nonalcoholic steatohepatitis. Sci. Rep. 6, 28786 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giri, J., Das, R., Nylen, E., Chinnadurai, R. & Galipeau, J. CCL2 and CXCL12 derived from mesenchymal stromal cells cooperatively polarize IL-10+ tissue macrophages to mitigate gut injury. Cell Rep. 30, 1923–1934.e4 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lan, Q. et al. CCL26 participates in the PRL-3-induced promotion of colorectal cancer invasion by stimulating tumor-associated macrophage infiltration. Mol. Cancer Ther. 17, 276–289 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. FGF-2 signaling in nasopharyngeal carcinoma modulates pericyte-macrophage crosstalk and metastasis. JCI Insight. 7, e157874 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, J., Chatterjee, M., Schmid, H., Beck, S. & Gawaz, M. Chemokine CXCL14 acts as a potential genetic target for liver fibrosis. J. Inflamm. (Lond). 13, 1 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, S. et al. Chemokine CXCL14 acts as a potential genetic target for liver fibrosis. Int. Immunopharmacol. 89, 107067 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sturmlechner, I. et al. p21 produces a bioactive secretome that places stressed cells under immunosurveillance. Science. 374, eabb3420 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia, G. et al. CXCL14 is a candidate biomarker for Hedgehog signalling in idiopathic pulmonary fibrosis. Thorax. 72, 780–787 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Layton, T. B. et al. Cellular census of human fibrosis defines functionally distinct stromal cell types and states. Nat. Commun. 11, 2768 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montgomery, E., Lee, J. H., Abraham, S. C. & Wu, T. T. Superficial fibromatoses are genetically distinct from deep fibromatoses. Mod. Pathol. 14, 695–701 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tanegashima, K. et al. CXCL14 is a natural inhibitor of the CXCL12-CXCR4 signaling axis. FEBS Lett. 587, 1731–1735 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei, S. T. et al. Hypoxia-induced CXC chemokine ligand 14 expression drives protumorigenic effects through activation of insulin-like growth factor-1 receptor signaling in glioblastoma. Cancer Sci. 114, 174–186 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tanegashima, K. et al. CXCL14 deficiency in mice attenuates obesity and inhibits feeding behavior in a novel environment. PLoS One. 5, e10321 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nara, N. et al. Disruption of CXC motif chemokine ligand-14 in mice ameliorates obesity-induced insulin resistance. J. Biol. Chem. 282, 30794–30803 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lai, X. et al. CXCL14 protects against polymicrobial sepsis by enhancing antibacterial functions of macrophages. Am. J. Respir. Cell Mol. Biol. 67, 589–601 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Komura, S. et al. Cell-type dependent enhancer binding of the EWS/ATF1 fusion gene in clear cell sarcomas. Nat. Commun. 10, 3999 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirata, A. et al. Dose-dependent roles for canonical Wnt signalling in de novo crypt formation and cell cycle properties of the colonic epithelium. Development. 140, 66–75 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harada, N. et al. Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene. EMBO. J. 18, 5931–5942 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akiyama, H. et al. Interactions between Sox9 and beta-catenin control chondrocyte differentiation. Genes Dev. 18, 1072–1087 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chytil, A., Magnuson, M. A., Wright, C. V. & Moses, H. L. Conditional inactivation of the TGF-beta type II receptor using Cre:Lox. Genesis. 32, 73–75 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sueyoshi, T., Yamamoto, K. & Akiyama, H. Conditional deletion of Tgfbr2 in hypertrophic chondrocytes delays terminal chondrocyte differentiation. Matrix Biol. 31, 352–359 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    We will be happy to hear your thoughts

    Leave a reply

    Dupuytren Solutions
    Logo
    Shopping cart