The RNA-binding E3 ligase MKRN2 selectively disrupts Il6 translation to restrain inflammation

Deal Score0
Deal Score0


  • Kawai, T. & Akira, S. TLR signaling. Cell Death Differ. 13, 816–825 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Medzhitov, R. & Horng, T. Transcriptional control of the inflammatory response. Nat. Rev. Immunol. 9, 692–703 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taams, L. S. Inflammation and immune resolution. Clin. Exp. Immunol. 193, 1–2 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderson, P. Post-transcriptional control of cytokine production. Nat. Immunol. 9, 353–359 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, X. Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat. Rev. Immunol. 16, 35–50 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Q. & Cao, X. Epigenetic remodeling in innate immunity and inflammation. Annu. Rev. Immunol. 39, 279–311 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smale, S. T. Transcriptional regulation in the innate immune system. Curr. Opin. Immunol. 24, 51–57 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J., Qian, C. & Cao, X. Post-translational modification control of innate immunity. Immunity 45, 15–30 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, J. & Cao, X. RBP–RNA interactions in the control of autoimmunity and autoinflammation. Cell Res. 33, 97–115 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carpenter, S., Ricci, E. P., Mercier, B. C., Moore, M. J. & Fitzgerald, K. A. Post-transcriptional regulation of gene expression in innate immunity. Nat. Rev. Immunol. 14, 361–376 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iwasaki, H. et al. The IκB kinase complex regulates the stability of cytokine-encoding mRNA induced by TLR–IL-1R by controlling degradation of regnase-1. Nat. Immunol. 12, 1167–1175 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akira, S. & Maeda, K. Control of RNA stability in immunity. Annu. Rev. Immunol. 39, 481–509 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zinngrebe, J., Montinaro, A., Peltzer, N. & Walczak, H. Ubiquitin in the immune system. EMBO Rep. 15, 28–45 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Gent, M., Sparrer, K. M. J. & Gack, M. U. TRIM proteins and their roles in antiviral host defenses. Annu. Rev. Virol. 5, 385–405 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, X. & Chen, Z. J. The role of ubiquitylation in immune defence and pathogen evasion. Nat. Rev. Immunol. 12, 35–48 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Leppek, K. et al. Roquin promotes constitutive mRNA decay via a conserved class of stem-loop recognition motifs. Cell 53, 869–881 (2013).

    Article 

    Google Scholar
     

  • Kuniyoshi, K. et al. Pivotal role of RNA-binding E3 ubiquitin ligase MEX3C in RIG-I-mediated antiviral innate immunity. Proc. Natl Acad. Sci. USA 111, 5646–5651 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jackson, R. J., Hellen, C. U. & Pestova, T. V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 11, 113–127 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wells, S. E., Hillner, P. E., Vale, R. D. & Sachs, A. B. Circularization of mRNA by eukaryotic translation initiation factors. Mol. Cell. 2, 135–140 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Imataka, H., Gradi, A. & Sonenberg, N. A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J. 17, 7480–7489 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Craig, A. W., Haghighat, A., Yu, A. T. & Sonenberg, N. Interaction of poly(A)denylate-binding protein with the eIF4G homologue PAIP enhances translation. Nature 392, 520–523 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martineau, Y. et al. Poly(A)-binding protein-interacting protein 1 binds to eukaryotic translation initiation factor 3 to stimulate translation. Mol. Cell. Biol. 28, 6658–6667 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmad, S. Unlocking TH17-cell differentiation. Nat. Rev. Immunol. 6, 793 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Neurath, M. F. Cytokines in inflammatory bowel disease. Nat. Rev. Immunol. 14, 329–342 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373–384 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shin, C. et al. MKRN2 is a novel ubiquitin E3 ligase for the p65 subunit of NF-κB and negatively regulates inflammatory responses. Sci. Rep. 7, 46097 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niepmann, M. & Gerresheim, G. K. Hepatitis C virus translation regulation. Int. J. Mol. Sci. 21, 2328 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dominski, Z. & Marzluff, W. F. Formation of the 3′ end of histone mRNA: getting closer to the end. Gene 396, 373–390 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bilinski, C., Burleson, J. & Forouhar, F. Inflammation associated with neoplastic colonic polyps. Ann. Clin. Lab. Sci. 42, 266–270 (2012).

    PubMed 

    Google Scholar
     

  • Zhang, Q. & Cao, X. Epigenetic regulation of the innate immune response to infection. Nat. Rev. Immunol. 19, 417–432 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hunter, C. & Jones, S. IL-6 as a keystone cytokine in health and disease. Nat. Immunol. 16, 448–457 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mosteiro, L., Pantoja, C., de Martino, A. & Serrano, M. Senescence promotes in vivo reprogramming through p16INK4a and IL-6. Aging Cell 17, e12711 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Hao, X. et al. TXNRD1 drives the innate immune response in senescent cells with implications for age-associated inflammation. Nat. Aging 4, 185–197 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Warde, K. M. et al. Senescence-induced immune remodeling facilitates metastatic adrenal cancer in a sex-dimorphic manner. Nat. Aging 3, 846–865 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choe, J. et al. mRNA circularization by METTL3–eIF3h enhances translation and promotes oncogenesis. Nature 561, 556–560 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roy, G. et al. PAIP1 interacts with poly(A) binding protein through two independent binding motifs. Mol. Cell. Biol. 22, 3769–3782 (2022).

    Article 

    Google Scholar
     

  • Beck, D. B., Werner, A., Kastner, D. L. & Aksentijevich, I. Disorders of ubiquitylation: unchained inflammation. Nat. Rev. Rheumatol. 18, 435–447 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, L. et al. MKRN2 knockout causes male infertility through decreasing STAT1, SIX4, and TNC expression. Front. Endocrinol. 14, 1138096 (2023).

    Article 

    Google Scholar
     

  • Liu, Z. et al. MKRN2 inhibits the proliferation of gastric cancer by downregulating PKM2. Aging 14, 2004–2013 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y., Cui, N. & Zheng, G. Ubiquitination of P53 by E3 ligase MKRN2 promotes melanoma cell proliferation. Oncol. Lett. 19, 1975–1984 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, P. H. et al. Makorin-2 is a neurogenesis inhibitor downstream of phosphatidylinositol 3-kinase/AKT (PI3K/AKT) signal. J. Biol. Chem. 283, 8486–8495 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheung, W. K. et al. Identification of protein domains required for makorin-2-mediated neurogenesis inhibition in Xenopus embryos. Biochem. Biophys. Res. Commun. 394, 18–23 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wolf, E. J. et al. MKRN2 physically interacts with GLE1 to regulate mRNA export and zebrafish retinal development. Cell Rep. 31, 107693 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, W., Liu, M. & Kirkwood, K. L. p38a stabilizes interleukin-6 mRNA via multiple AU-rich elements. J. Biol. Chem. 283, 1778–1785 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paschoud, S. et al. Destabilization of interleukin-6 mRNA requires a putative RNA stem-loop structure, an AU-rich element, and the RNA-binding protein AUF1. Mol. Cell. Biol. 26, 8228–8241 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, M. et al. K33-linked polyubiquitination of Zap70 by Nrdp1 controls CD8+ T cell activation. Nat. Immunol. 16, 1253–1262 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Q. et al. Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature 525, 389–393 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, Z. et al. Lys29-linkage of ASK1 by Skp1–Cullin 1–Fbxo21 ubiquitin ligase complex is required for antiviral innate response. eLife 5, e14087 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blue, S. M. et al. Transcriptome-wide identification of RNA-binding protein binding sites using seCLIP–seq. Nat. Protoc. 17, 1223–1265 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, D. et al. The phosphatase DUSP2 controls the activity of the transcription activator STAT3 and regulates TH17 differentiation. Nat. Immunol. 16, 1263–1273 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, R. et al. Nucleophosmin 1 promotes mucosal immunity by supporting mitochondrial oxidative phosphorylation and ILC3 activity. Nat. Immunol. 25, 1565–1579 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    We will be happy to hear your thoughts

    Leave a reply

    Dupuytren Solutions
    Logo
    Shopping cart