Targeting lactylation reinforces NK cell cytotoxicity within the tumor microenvironment

Deal Score0
Deal Score0


  • Wolf, N. K., Kissiov, D. U. & Raulet, D. H. Roles of natural killer cells in immunity to cancer, and applications to immunotherapy. Nat. Rev. Immunol. 23, 90–105 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cózar, B. et al. Tumor-infiltrating natural killer cells. Cancer Discov. 11, 34–44 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Terrén, I., Orrantia, A., Vitallé, J., Zenarruzabeitia, O. & Borrego, F. NK cell metabolism and tumor microenvironment. Front. Immunol. 10, 2278 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brand, A. et al. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 24, 657–671 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Husain, Z., Huang, Y. N., Seth, P. & Sukhatme, V. P. Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells. J. Immunol. 191, 1486–1495 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harmon, C. et al. Lactate-mediated acidification of tumor microenvironment induces apoptosis of liver-resident NK cells in colorectal liver metastasis. Cancer Immunol. Res. 7, 335–346 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, X. H. et al. Mitochondrial fragmentation limits NK cell-based tumor immunosurveillance. Nat. Immunol. 20, 1656 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, D. et al. Metabolic regulation of gene expression by histone lactylation. Nature 574, 575–580 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Irizarry-Caro, R. A. et al. TLR signaling adapter BCAP regulates inflammatory to reparatory macrophage transition by promoting histone lactylation. Proc. Natl Acad. Sci. USA 117, 30628–30638 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiong, J. et al. Lactylation-driven METTL3-mediated RNA m6A modification promotes immunosuppression of tumor-infiltrating myeloid cells. Mol. Cell 82, 1660–1677 (2022).

    Article 

    Google Scholar
     

  • Gu, J. et al. Tumor metabolite lactate promotes tumorigenesis by modulating MOESIN lactylation and enhancing TGF-β signaling in regulatory T cells. Cell Rep. 40, 110986 (2022).

    Article 

    Google Scholar
     

  • Fan, W. et al. Global lactylome reveals lactylation-dependent mechanisms underlying T17 differentiation in experimental autoimmune uveitis. Sci. Adv. 9, eadh4655 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Z. H. et al. Altered phenotypic and metabolic characteristics of FOXP3CD3CD56 natural killer T (NKT)-like cells in human malignant pleural effusion. Oncoimmunology 12, 2160558 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Walenta, S. et al. High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res. 60, 916–921 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Soto, C. A., Lesch, M. L., Munger, J. C. & Frisch, B. J. Effects of elevated lactate in the bone marrow microenvironment during acute myeloid leukemia. Blood 140, 8620–8621 (2022).

    Article 

    Google Scholar
     

  • Chen, Y. et al. Increased lactate in AML blasts upregulates TOX expression, leading to exhaustion of CD8 T cells. Am. J. Cancer Res. 11, 5726–5742 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cantó, C., Menzies, K. J. & Auwerx, J. NAD Metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab. 22, 31–53 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stein, L. R. & Imai, S. The dynamic regulation of NAD metabolism in mitochondria. Trends Endocrinol. Metab. 23, 420–428 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zou, Y. J. et al. Illuminating NAD metabolism in live cells and using a genetically encoded fluorescent sensor. Dev. Cell 53, 240–252 (2020).

    Article 

    Google Scholar
     

  • Rajman, L., Chwalek, K. & Sinclair, D. A. Therapeutic potential of NAD-boosting molecules: the evidence. Cell Metab. 27, 529–547 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trammell, S. A. J. et al. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nat. Commun. 7, 12948 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, H. B. et al. NAD repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 352, 1436–1443 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J. H. et al. MEF2C regulates NK cell effector functions through control of lipid metabolism. Nat. Immunol. 25, 928–928 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown, K. D. et al. Activation of SIRT3 by the NAD precursor nicotinamide riboside protects from noise-induced hearing loss. Cell Metab. 20, 1059–1068 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cantó, C. et al. The NAD precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 15, 838–847 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin, J. et al. SIRT3-dependent delactylation of cyclin E2 prevents hepatocellular carcinoma growth. EMBO Rep. 24, e56052 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uhlen, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Archer, S. L. Mitochondrial dynamics—mitochondrial fission and fusion in human diseases. N. Engl. J. Med. 369, 2236–2251 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brand, C. S., Tan, V. P., Brown, J. H. & Miyamoto, S. RhoA regulates Drp1 mediated mitochondrial fission through ROCK to protect cardiomyocytes. Cell Signal. 50, 48–57 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Esposito, D. et al. ROCK1 mechano-signaling dependency of human malignancies driven by TEAD/YAP activation. Nat. Commun. 13, 703 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Q. F. et al. Inhibition of ROCK ameliorates pulmonary fibrosis by suppressing M2 macrophage polarisation through phosphorylation of STAT3. Clin. Transl. Med. 12, e1036 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X. L. et al. Lactate metabolism in human health and disease. Signal Transduct. Target. Ther. 7, 305 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Apostolova, P. & Pearce, E. L. Lactic acid and lactate: revisiting the physiological roles in the tumor microenvironment. Trends Immunol. 43, 969–977 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bergers, G. & Fendt, S. M. The metabolism of cancer cells during metastasis. Nat. Rev. Cancer 21, 162–180 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moreno-Yruela, C. et al. Class I histone deacetylases (HDAC1-3) are histone lysine delactylases. Sci. Adv. 8, eabi6696 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan, W. et al. A feedback loop driven by H3K9 lactylation and HDAC2 in endothelial cells regulates VEGF-induced angiogenesis. Genome Biol. 25, 165 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Myers, J. A. & Miller, J. S. Exploring the NK cell platform for cancer immunotherapy. Nat. Rev. Clin. Oncol. 18, 85–100 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Daher, M. et al. Targeting a cytokine checkpoint enhances the fitness of armored cord blood CAR-NK cells. Blood 137, 624–636 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laskowski, T. J., Biederstädt, A. & Rezvani, K. Natural killer cells in antitumour adoptive cell immunotherapy. Nat. Rev. Cancer 22, 557–575 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vago, L. & Gojo, I. Immune escape and immunotherapy of acute myeloid leukemia. J. Clin. Invest. 130, 1552–1564 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhansali, R. S., Pratz, K. W. & Lai, C. Recent advances in targeted therapies in acute myeloid leukemia. J. Hematol. Oncol. 16, 29 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, H. T. Emerging agents and regimens for AML. J. Hematol. Oncol. 14, 49 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hansrivijit, P., Gale, R. P., Barrett, J. & Ciurea, S. O. Cellular therapy for acute myeloid leukemia—current status and future prospects. Blood Rev. 37, 100578 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Christopher, M. J. et al. Immune escape of relapsed AML cells after allogeneic transplantation. N. Engl. J. Med. 379, 2330–2341 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeiser, R. & Vago, L. Mechanisms of immune escape after allogeneic hematopoietic cell transplantation. Blood 133, 1290–1297 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Toffalori, C. et al. Immune signature drives leukemia escape and relapse after hematopoietic cell transplantation. Nat. Med. 25, 603–611 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Cooley, S., Parham, P. & Miller, J. S. Strategies to activate NK cells to prevent relapse and induce remission following hematopoietic stem cell transplantation. Blood 131, 1053–1062 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merindol, N., Charrier, E., Duval, M. & Soudeyns, H. Complementary and contrasting roles of NK cells and T cells in pediatric umbilical cord blood transplantation. J. Leukoc. Biol. 90, 49–60 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Locatelli, F. et al. Hematopoietic and immune recovery after transplantation of cord blood progenitor cells in children. Bone Marrow Transplant. 18, 1095–1101 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Xu, J. & Niu, T. Natural killer cell-based immunotherapy for acute myeloid leukemia. J. Hematol. Oncol. 13, 167 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, D. Y. et al. GARP-mediated active TGF-β1 induces bone marrow NK cell dysfunction in AML patients with early relapse post-allo-HSCT. Blood 140, 2788–2804 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. J. et al. Inhibition of p300 impairs Foxp3 T regulatory cell function and promotes antitumor immunity. Nat. Med. 19, 1173–1177 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Capello, M. et al. Targeting the Warburg effect in cancer cells through ENO1 knockdown rescues oxidative phosphorylation and induces growth arrest. Oncotarget 7, 5598–5612 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Li, X. J. et al. Mitochondria-translocated PGK1 functions as a protein kinase to coordinate glycolysis and the TCA cycle in tumorigenesis. Mol. Cell 61, 705–719 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Z. Q. et al. SENP7 senses oxidative stress to sustain metabolic fitness and antitumor functions of CD8 T cells. J. Clin. Invest. 132, e155224 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aydin, E., Johansson, J., Nazir, F. H., Hellstrand, K. & Martner, A. Role of NOX2-derived reactive oxygen species in NK cell-mediated control of murine melanoma metastasis. Cancer Immunol. Res. 5, 804–811 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    We will be happy to hear your thoughts

    Leave a reply

    Dupuytren Solutions
    Logo
    Shopping cart